1 of 6

Slide Notes

DownloadGo Live

Criterios De Congruencia

Published on Jun 05, 2017

No Description

PRESENTATION OUTLINE

Criterios De Congruencia

Valentina Dos Santos Aldana Cuello 

Untitled Slide

  • Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos. Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado.
  • Dos figuras son congruentes cuando cada uno de sus elementos son exactamente iguales.En matemáticas, dos figuras de puntos son congruentes si tienen los lados iguales y el mismo tamaño (o también, están relacionados por un movimiento) si existe una isometría que los relaciona: una transformación que es combinación de translaciones, rotaciones y reflexiones. Por así decirlo, dos figuras son congruentes si tienen la misma forma y tamaño, aunque su posición u orientación sean distintas. Las partes coincidentes de las figuras congruentes se llaman homólogas o correspondientes.
Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos. Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado.

Congruencia de triángulos

  • Los criterios de congruencia de triángulos nos dicen que no es necesario verificar la congruencia de los 6 pares de elementos ( 3 pares de lados y 3 pares de ángulos), bajo ciertas condiciones, podemos verificar la congruencia de tres pares de elementos. Primer criterio de congruencia: LLL Dos triángulos son congruentes si sus tres lados son respectivamente iguales. a ≡ a’ b ≡ b’ c ≡ c’ → triáng ABC ≡ triáng A’B'C’ Segundo criterio de congruencia: LAL Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos. b ≡ b’ c ≡ c’ α ≡ α’ → triáng ABC ≡ triáng A’B'C’ Tercer criterio de congruencia: ALA Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado. b ≡ b’ α ≡ α’ β ≡ β’ → triáng ABC ≡ triáng A’B'C’ Cuarto criterio de congruencia: LLA Dos triángulos son congruentes si tienen dos lados respectivamente congruentes y los ángulos opuestos al mayor de los lados también son congruentes. a ≡ a’ b ≡ b’ β ≡ β’ → triáng ABC ≡ triáng A’B'C’

Congruencia de triángulos

  • Los criterios de congruencia de triángulos nos dicen que no es necesario verificar la congruencia de los 6 pares de elementos ( 3 pares de lados y 3 pares de ángulos), bajo ciertas condiciones, podemos verificar la congruencia de tres pares de elementos. Primer criterio de congruencia: LLL Dos triángulos son congruentes si sus tres lados son respectivamente iguales. a ≡ a’ b ≡ b’ c ≡ c’ → triáng ABC ≡ triáng A’B'C’ Segundo criterio de congruencia: LAL Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos. b ≡ b’ c ≡ c’ α ≡ α’ → triáng ABC ≡ triáng A’B'C’ Tercer criterio de congruencia: ALA Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado. b ≡ b’ α ≡ α’ β ≡ β’ → triáng ABC ≡ triáng A’B'C’ Cuarto criterio de congruencia: LLA Dos triángulos son congruentes si tienen dos lados respectivamente congruentes y los ángulos opuestos al mayor de los lados también son congruentes. a ≡ a’ b ≡ b’ β ≡ β’ → triáng ABC ≡ triáng A’B'C’

Ejemplos

  • 2° Caso ALA: Dos triángulos son congruentes si tienen iguales dos de sus ángulos respectivos y el lado entre ellos. 3° Caso LLL: Dos triángulos son congruentes si tienen iguales los tres lados. y el ángulo opuesto mayor medida que ellos

Ejemplos

  • 2° Caso ALA: Dos triángulos son congruentes si tienen iguales dos de sus ángulos respectivos y el lado entre ellos. 3° Caso LLL: Dos triángulos son congruentes si tienen iguales los tres lados. y el ángulo opuesto mayor medida que ellos