1 of 16

Slide Notes

DownloadGo Live

Cubic Function

Published on Dec 03, 2015

No Description

PRESENTATION OUTLINE

CUBIC FUNCTIONS

BY:ALEXIS, ELIZABETH, AND ABBY

PARENT FUNCTION

  • Rule: f(x)=x^3
  • Based on the equation, x is cubed

PARENT FUNCTION

  • Table
  • Based on the table, when x is a
  • negative number the y is a negative
  • number. When x is a positive number
  • the y is a positive number.

PARENT FUNCTION

  • Graph
  • Based on the graph, it makes
  • an "S" shaped line.

SYMBOLIC FUNCTION FORM

  • f(x)=a(x-h)^3+k
  • "a" represents if the line is reflected over the x axis.
  • It will stretch or shrink the graph.
  • Multiply the y values in the parent function by whatever
  • "a" is to get the y values of the other equation.

SYMBOLIC FUNCTION FORM

  • f(x)=a(x-h)^3+k
  • "h" represents if the line is translated left or right on the graph.
  • It shifts left or right on the x-axis.
  • Add or subtract the x values of the parent function
  • for whatever "h" is to get the x values of the other equation.

SYMBOLIC FUNCTION FORM

  • f(x)=a(x-h)^3+k
  • "k" represents if the line is shifted up or down on the graph.
  • It moves up or down the y-axis.
  • Add or subtract the y values of the parent function
  • by whatever "k" is to get the y values of the other equation.

WRITING AN EQUATION FOR CUBIC FUNCTION TRANSFORMATION

  • Add or subtract outside the original function f(x)=x^3
  • f(x)=x^3+6 or f(x)=x^3-6
  • Add or subtract inside the original function f(x)=x^3
  • f(x)=(x+6)^3 or f(x)=(x-6)^3

CONTINUE OF WRITING AN EQUATION

  • Multiply or divide the original function f(x)=x^3
  • f(x)=6x^3 or f(x)=1/6x^3
  • Negative in front of original function f(x)=x^3
  • f(x)=--x^3

GRAPHING AN EQUATION FOR CUBIC FUNCTION TRANSFORMATION

  • Add outside the original function f(x)=x^3
  • f(x)=x^3+6 moves the line up the y-axis
  • Subtract outside the original function f(x)=x^3
  • f(x)=x^3-6 moves the line down the y-axis

CONTINUE OF GRAPHING AN EQUATION

  • Add inside the original function f(x)=x^3
  • f(x)=(x+6)^3 moves the line left on the x-axis
  • Subtract inside the original function f(x)=x
  • f(x)=(x-6)^3 moves the line right on the x-axis

CONTINUE OF GRAPHING AN EQUATION

  • Multiply the original function f(x)=x^3
  • f(x)=6x^3 shrinks the line
  • Divide the original function f(x)=x^3
  • f(x)=1/6x^3 stretches the line

CONTINUE OF GRAPHING AN EQUATION

  • Negative in front of original function f(x)=x^3
  • f(x)=--x^3 rotates the graph

FUNCTION QUESTIONS

  • It is a function, because every x has 1 y
  • D:all real #'s. R:all real #'s
  • Increasing:(-oo,oo) Decreasing:never
  • Positive:(0,oo) Negative:(-oo,0)

FUNCTION QUESTIONS

  • As x--> oo, y--> oo
  • As x--> -oo, y--> -oo
  • No critical points
  • X and Y intercepts (0,0)
  • The inverse is a function, because every y has 1 x

THE END