1 of 15

Slide Notes

DownloadGo Live

James Maxwell

Published on Nov 18, 2015

No Description

PRESENTATION OUTLINE

JAMES MAXWELL

BORN

  • Edinburgh, Scotland,

James Clerk Maxwell was born in Edinburgh, Scotland, on June 13, 1831. He was the only child of John Clerk, an Edinburgh lawyer. Shortly after James' birth, John Clerk and his family moved

to a country estate at Glenlair, near Edinburgh, which he inherited from his Maxwell ancestors. At that time, John Clerk adopted the additional surname Maxwell. The family lived a comfortable, middle-class life.

EDUCATION

James' early education was given by his mother, a dedicated Christian, and included studying the Bible. James exceptional memory became apparent at this time when he memorized all of Psalm 119. By the age of 8, James found his toys uninteresting. He preferred to apply his great curiosity to simple scientific investigations. For example, he used a tin plate to reflect sunlight, and made observations of the life-cycle of the frog.

His mother taught him to see God's scientific genius and compassionate hand in the beauties of nature. This conviction that there was complete harmony between scientific investigation and God's teachings in the Bible had a great influence on James' life and work. Sadly, his mother died when he was still only 8. His father then engaged a tutor for his son.

In 1841, James began formal schooling at the Edinburgh Academy. Poor health frequently kept him absent, but his academic progress was excellent. His first scientific paper—a mathematical analysis involving the ellipse—was published when he was only 15.

Major contribution to physics


Maxwell's first major contribution to science was a study of the planet Saturn's rings, the nature of which was much debated. Maxwell showed that stability could be achieved only if the rings consisted of numerous small solid particles, an explanation still accepted. Maxwell next considered molecules of gases in rapid motion. By treating them statistically he was able to formulate (1866), independently of Ludwig Boltzmann, the Maxwell-Boltzmann kinetic theory of gases. This theory showed that temperatures and heat involved only molecular movement. Philosophically, this theory meant a change from a concept of certainty--heat viewed as flowing from hot to cold--to one of statistics--molecules at high temperature have only a high probability of moving toward those at low temperature.

This new approach did not reject the earlier studies of thermodynamics; rather, it used a better theory of the basis of thermodynamics to explain these observations and experiments. Maxwell's most important achievement was his extension and mathematical formulation of Michael Faraday's theories of electricity and magnetic lines of force. In his research, conducted between 1864 and 1873, Maxwell showed that a few relatively simple mathematical equations could express the behavior of electric and magnetic fields and their interrelated nature; that is, an oscillating electric charge produces an electromagnetic field. These four partial differential equations first appeared in fully developed form in Electricity and Magnetism (1873). Since known as Maxwell's equations they are one of the great achievements of 19th-century physics.

Maxwell also calculated that the speed of propagation of an electromagnetic field is approximately that of the speed of light. He proposed that the phenomenon of light is therefore an electromagnetic phenomenon. Because charges can oscillate with any frequency, Maxwell concluded that visible light forms only a small part of the entire spectrum of possible electromagnetic radiation.

INFLUENCES

Untitled Slide