In electrochemistry, electricity can be generated by movements of electrons from one element to another in a reaction known as redox reaction, or oxidation-reduction reaction.
In a battery, the overall chemical reaction is divided into two physically and electrically separated processes: one is an oxidation process at the battery negative electrode wherein the valence of at least one species becomes more positive, and the other is a reduction process at the battery positive electrode wherein the valence of at least one species becomes more negative.
Corrosion occurs primarily on the grid and is known as a softening and shedding of the lead off the plates. This reaction cannot be avoided because the electrodes in a lead acid environment are always reactive. Lead shedding is a natural phenomenon that can only be slowed down and not eliminated. A battery that reaches the end of life through this failure mode has met or exceeded the anticipated life span
Electrolysis is a process by which electrical energy is used to produce a chemical change. Perhaps the most familiar example of electrolysis is the decomposition (breakdown) of water into hydrogen and oxygen by means of an electric current. The same process can be used to decompose compounds other than water.